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Small oscillations of a liquid drop with surface charge 
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Abstract. A viscous incompressible non-conducting fluid forms a spherical drop with an 
electric charge distributed uniformly over its surface. Small oscillations about the spherical 
shape are possible because of surface tension; a transcendental equation is given, to 
determine their frequency and damping. If the electric charge is sufficiently large, the drop 
is unstable. But the principle of exchange of stabilities is valid, and the maximum charge 
consistent with stability is given by Rayleigh’s calculation for a conducting, inviscid fluid 
drop. 

Suppose a viscous incompressible fluid forms a drop in vacuum. It is maintained in a 
spherical shape by the gravitational attraction of its parts or by surface tension. Small 
oscillations of the drop about the spherical shape are damped by the viscosity. Their 
damping and frequency are obtainable from a linearised theory; they are proportional 
to the real and imaginary parts of a certain dimensionless quantity, here called z2.  The 
cases of gravity and surface tension were treated by Chandrasekhar (1959) and Reid 
(1960), respectively. All relevant properties of the drop are characterised by a4, a 
dimensionless real parameter which depends on the kind of distortion from the 
spherical shape. Chandrasekhar (1959) derived a transcendental equation giving z 2  as 
a multivalued function of a4, and Reid (1960) showed that the same equation is 
applicable in his case, with a different formula for a4. Tang and Wong (1974) have 
emphasised the wide applicability of Chandrasekhar’s transcendental equation. They 
show that it can be used even when surface tension, gravitational attraction, and 
electrostatic repulsion are present simultaneously, a4 being a sum of terms represent- 
ing the three forces. This result depends on simplifying assumptions about the 
distribution of electric charge. Tang and Wong (1974) list three cases in which their 
simple result is obtainable. If the electric charge is distributed uniformly over the 
surface of the undistorted spherical drop, they obtain Chandrasekhar’s equation in the 
limits of zero and infinite conductivity. However, their treatment of the drop of zero 
conductivity is based on two questionable assumptions. They ignore the components 
of electric force parallel to the surface of the drop, and they assert that the electric 
charge per unit solid angle is constant during the oscillation. If these assumptions are 
removed, then z 2  depends also on p, a second dimensionless parameter. The modified 
transcendental equation is given below; it disagrees with that of Saville (1974) because 
of differences in notation and minor errors in calculation. Since instability of the 
charged drop is possible, it seems desirable to show that the principle of exchange of 
stabilities (Chandrasekhar 1961) is applicable. The proof is given below. Using this 
result, the criterion for stability or instability of the drop can be found. In the absence 
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of gravitation, the criterion is the same as that found by Rayleigh (1882) for a 
perfectly conducting drop. 

Gravitational forces and electrical conductivity are set equal to zero in the cal- 
culations of this note, for the sake of brevity and simplicity. Spherical polar coor- 
dinates (r,  0 , 4 )  are used. The hydrodynamic part of the calculation follows the work 
of Chandrasekhar (1959), in which the surface of the drop is given by 

r = R +eY?(8 ,4 ) .  (1) 

Here E is a time-dependent small parameter, and Y;"(8, &)  is a spherical harmonic. 
Spherically symmetric oscillations are impossible; hence 1 is a positive integer, Trans- 
lations of the whole drop are not considered; hence 1 > 1. The fluid velocity is a 
poloidal vector, whose radial component is 

ur = I ( I  + 1)(U(r)/r2)Y;" (6 ,4 )  exp(-ut), 

where t is the time. The function U ( r )  and the complex coefficient U are to be 
determined. This radial velocity must be consistent with ( 1 ) ;  hence E is proportional 
to ( U ( R ) / u )  exp(-ut). Since U will depend on p and p, the density and viscosity of 
the fluid, the dimensionless quantity 

z 2  = R 2 p u / p  

is used. In the calculation of Reid (1960), electric and gravitational forces are absent, 
and the surface tension T is present; thus z 2  is a multivalued function of 1 and the 
dimensionless combination pRT/p2 .  If an electric charge Q is distributed over the 
surface of the drop, there are additional forces proportional to Q2. The drop of 
infinite conductivity is treated correctly by Tang and Wong (1974). In this case, z 2  is a 
function of 1 and 

a4=1(1 - l ) (pR/p2)[ (1+2)T-  Q 2 / 1 6 r 2 ~ o R 3 ] ,  (2) 

where E O  is the permittivity of the vacuum. To obtain this result, the surface charge 
density Z is calculated from the condition that the electric field vanishes everywhere 
inside the drop. In the case of zero conductivity, the electric charge is transported 
only by convection, and Z-Q/4?rR2 is a small quantity, linear in V(r).  These 
assumptions lead to 

a Z / a t  = (Q/4?rR2)[aur/ar], 

where the quantity in brackets is evaluated at the surface of the drop. Hence the 
electrostatic potential outside the drop is 

where is the permittivity of the liquid drop. The electric field inside and outside the 
drop can be calculated in terms of U ( R )  and U'@). The tangential electric force at 
the surface depends on a non-negative dimensionless parameter 

1 

The tangential force per unit area, in the direction of increasing 8, is 

( P ~ ~ / ~ ~ R ~ ) [ D ~  ~ ( r ) l R  a y;"/ae exp(-ut). 
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Here the subscript R denotes evaluation at r = R, and 

D1 = d/dr - (I + l ) / r  

is a differential operator. As cl + +a, the electric field inside the drop tends to zero, 
and p+O; hence the case of infinite conductivity can be recovered from the following 
calculation by setting p = 0. The pressure inside the drop is a constant plus 

d/dr(~~D2U(r)+~uU(r) )Y;1  (44 )  exp(-ut), (3) 

where 

D2 = d2/dr2 - 1(1+ l)/r2. 

The fluid motion inside the drop obeys the linearised Navier-Stokes equation, which 
leads to (3) and the ordinary differential equation 

D2[DtU(r)+ (Pu/c~)u(r)I = 0. (4) 

The desired solution must satisfy certain boundary conditions. First, V(r) and U’(r) 
vanish as r -+ 0. Second, the tangential electric force at the surface requires 

RZ2[DcU(r) ]~  -P2[D1U(r) ]~  = 0. (5  1 
Here 

Dc = d2/dr2 - 2r.-’ d/dr + I(Z + l ) / r2  

is the differential operator used by Chandrasekhar (1959). Finally, the radial forces at 
the surface require 

+ ( a 4 / R > U ( R ) - p 2 [ D 1  U ( r ) l ~  = 0, (6) 
where a4 is defined by (2). The conditions (5) and (6) may be compared with the 
interfacial conditions given by Miller and Scriven (1968), who study a fluid-fluid 
interface having rather general mechanical properties. But the p2 terms differ from 
each of the things treated by Miller and Scriven (1968). 

The desired solution of (4) has the form 

U(r) = Ar1’2Jl+4 (zr/R) + Brf+’. 

The conditions (5) and (6) give two homogeneous linear equations in A and B. A 
non-trivial solution is obtained if and only if the determinant vanishes. This condition 
gives the equation for z : 

where Qt+i(t)= Jl+t  (z) /J i+i(z) .  The right-hand side of (7) is an even meromorphic 
function of t, and it vanishes as z + 0. If p = 0, (7) becomes Chandrasekhar’s tran- 
scendental equation, whose solutions are obtained numerically by Tang and Wong 
(1974). If p2  and a 2  are positive, two limiting cases may be studied analytically. 
When is small and positive, there is a slowly decaying mode having 

z 2  = (21 + 1)-’p2+ 0(p4). 
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The decay time is of the order of the electroviscous time constant used by Lang ef a1 
(1976); but surface tension is essential here and negligible in their work. When /3 is 
large and positive, there are damped oscillations having 

z 2  = ( e ~ p * f i , r ) p ~ ’ ~  + ~ ( p ~ / ~ ) .  

This implies that vorticity is negligible in the interior of the drop. These oscillations 
are mentioned by Saville (1974). 

A sufficiently large charge can cause the distortion of the spherical surface to 
increase indefinitely. In the linearised theory, the condition for stability with respect 
to the distortion described by (1) is a4 2 0, while a4 C 0 gives instability. The proof of 
this assertion depends heavily on the principle of exchange of stabilities. Melcher and 
Schwarz (1968) study a related problem for which this principle is not valid, and it 
seems desirable to verify this principle. The method is suggested by Chandrasekhar 
(1961). I assume that U and z 2  are purely imaginary and non-zero, and proceed to 
show that any function U ( r )  which satisfies (4) and the boundary conditions must 
vanish identically. If (4) is satisfied, 

dr(U(r))*Dz[D2U(r)+(z2/R2)U(r)] = 0. 

Partial integration and use of (6) give 

- ( z 2 / R 2 )  r [IUf(r)12+I(I+l)r-21U(r)i2] dr 

Further partial integration and use of ( 5 )  give 
.R .R 

IDcU(r)l2 dr + (1  - 1)(1+ 2) lU’(r)/r12 dr b 0 

R 

+31(1+ 1)  J r-21U’(r)-2U(r)/r12 dr 

- ( z 2 / R 2 )  [IUf(r)12+1(1+ l)r-21U(r)12] dr 

0 

R 

0 

-(l+ 1)(ct4/Z2R3)1U(R)(2-(p2/Z2R)I[D1U(r)]~12= 0. 
The real and imaginary parts of this expression must vanish separately, and hence the 
first three integrands must vanish. Therefore U(r)  vanishes identically. This means 
that (7) cannot be satisfied when z 2  is purely imaginary and non-zero. Further 
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calculation shows that the condition for stability of the drop is that a430 when 1 > 1. 
Finally, the necessary and sufficient condition for stability is 

This agrees with the result of Rayleigh (1882), although Rayleigh considered a fluid of 
infinite conductivity and zero viscosity. 

The foregoing calculations on oscillations and stability should be compared with 
experiment, if the assumed spherical symmetry of the liquid drop and its electric 
charge can be realised. It seems desirable to include an arbitrary electrical conduc- 
tivity in the calculations, and to compare such calculations with experiments on liquids 
of various conductivities. Such calculations are given by Saville (1974), who seems to 
doubt whether the principle of exchange of stabilities is applicable. But the cal- 
culation of the previous paragraph can easily be generalised to include an arbitrary 
electrical conductivity, and thus the principle of exchange of stabilities can be proved. 
Finally, the principle can be used to show that (8) is the condition for stability of a 
liquid drop of arbitrary conductivity. 
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